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We are concerned with improving the forecast capabilities of the global approach to time series. We assume
that the normal techniques of global mapping are applied, the noise reduction is performed, etc. Then, using the
mathematical foundations behind such approaches, we propose a method that, without a great computational
cost, greatly increases the accuracy of the corresponding forecasting.
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I. INTRODUCTION

For any observed system, physical or otherwise, one gen-
erally wishes to make predictions on its future evolution.
Sometimes, very little is known about the system. Possibly,
the dynamics behind the phenomenon being studied is un-
known, and one is given just a time series of one �or a few�
of its parameters. Therefore, performing a time-series analy-
sis is the best one can do in order to learn the properties of
the phenomenon. Its relevance may be gauged by the exis-
tence of extensive studies in a great diversity of branches of
knowledge, in physics as well as in economics and the stock
exchange, meteorology, oceanography, medicine, etc.

A time series is normally taken as a set of numbers that
are the possible outcome of measurements of a given quan-
tity, taken at regular intervals. In reality, however, the as-
sumption that the time series reflects in some way the under-
lying dynamics of the systems is worsened by the fact that
the measured data usually contain irregularities. These may
be due to a random external influence on a linear system, a
noise �induced possibly by the measuring apparatus or other
sources of contamination� which gets mixed with the desired
information, thereby hiding it. But it may well be that they
appear as a manifestation of low-dimensional deterministic
chaos resulting from an intrinsic nonlinear dynamics govern-
ing the quantity under study �over which a random noise
may also be superimposed�, with the characteristic sensitiv-
ity to initial conditions.

If the time series is the only source of information on the
system, prediction of the future values of the series requires
a modeling of the system’s �perhaps nonlinear� dynamical
law through a set of differential equations or through discrete
maps. However, it is even possible that we do not know
whether the measured quantity is the only relevant degree of
freedom �frequently it is not� of the dynamical problem or
how many of them there are.

Both noise-contaminated linear and nonlinear systems
have nevertheless been studied with success, employing sta-
tistical tools and chaos-theory concepts, together with time-

series analysis �1,2�. Given a time series, one should ask first
whether it represents a causal process or whether it is sto-
chastic. Tools have been developed to decide upon this fun-
damental question �the most common ones are spectral
analysis, Lyapunov characteristic exponents, and correlation
functions; see �3,4��. In the case of a series originating from
a low-dimensionality chaotic dynamics, traditional linear
methods of analysis are not adequate, but an analysis appa-
ratus was devised for applications to such nonlinear systems
�3,4� and we will not be concerned with stochastic processes
in this paper.

Methods for dealing with nonlinear time series fall mainly
into two categories: local or global methods. Local methods
are based on the assumption that, while in the long run
nearby trajectories on the phase space diverge considerably,
they stay within the same neighborhood for a while. One
may conjecture that to predict the next step in a time series,
a good indication should come from the previous visits the
system had made to the phase space neighborhood contain-
ing the “last point” of the series. An average of the behavior
of the system for neighboring points, with a minimization of
the distance in the phase space between them, gives good
results for the next-step forecasting.

Global methods, on the other hand, postulate a functional
form for the dynamics to be valid for any time. Usually one
considers polynomials of a suitable degree, and one should
devise a convenient way to estimate its coefficients. In this
paper, we are going to concentrate on the global approach
and, actually, we will start from the global mapping itself;
i.e., we are not going to be concerned with how the global
mapping was generated �there are many standard approaches
to do it� and we will not deal with noise reduction either
�such considerations are important when determining the
mappings, etc.�. We will focus on a method to, from any
standard mapping one might have, improve the forecasting
using it, without having to pay a very high computational
price.

Nonlinear analysis of time series relies not on the original
maps of the dynamic system, but on its time-delay recon-
struction. All discussions on the nonlinear treatment of time
series make use of this reconstruction scheme. There are al-
ready classical references dealing with the subject �1,3–8�.
This method allows one to reconstruct the phase space of the
system with reasonable accuracy, using the information con-
tained in the series only.
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Lorenz �9� showed that dynamic systems of low dimen-
sionality could present strange attractors on their phase
spaces. Takens �10� proposed a method to reconstruct such
phase spaces from the knowledge of a time series obtained
from the system. He demonstrated that the original attractor
and the reconstructed one are characterized by the same
asymptotic properties and topological characteristics �11�. So
if we want to analyze the properties of the corresponding
attractor of the system, we have to reconstruct it.

In �10�, Takens used a method to reconstruct the phase

space. Vectors �i
� �with dimension m� are reconstructed from

the time series xi where xi=x�ti�, i=1, . . . ,N, as follows:

�i
� = �x�ti�,x�ti + p�, . . . ,x„ti + �m − 1�p…� , �1�

where m is the embedding dimension and p is the time lag
�for definitions, see �12��. Based on the trajectories of the
reconstructed attractor, we can study various topological in-
variants of the system such as the Lyapunov exponents, the
generalized entropies �11�, etc. We can also extract the un-
derlying dynamics via a global modeling of the system. For
example, one can try to obtain a low-order Taylor series ex-
pansion for the system, thus obtaining a global mapping rep-
resenting the system. We can use this mapping to perform a
forecast of entries we ignore—i.e., in the future.1

II. AN ALGORITHM TO IMPROVE THE GLOBAL
FORECASTING

A. Stating the problem

Suppose that the system can be modeled by a set of dif-
ferential equations of low dimensionality. What we would
like to obtain is some kind of global map that, given any
point of the phase space, could calculate a subsequent point
of the trajectory. If we know the set of differential equations
�SDE� that models the system, we could find a solution
�starting from an initial condition� by making a numerical
integration through some map obtained from the SDE �prob-
ably a Runge-Kutta map, a Taylor series one, or an expan-
sion in some function basis�. For practical purposes �comput-
ers cannot work with infinity� a truncation must occur at
some order of the series expansion. However, if the trunca-
tion order is low, we can run away from the real solution in
a few time steps �even if each time step is very small�. For
chaotic systems a Runge-Kutta expansion of degree less than
4 is not used �in general�. This implies that the map gener-
ated presents polynomials of high degree. Let us exemplify
using one of the simplest chaotic system that exists, the Lo-
renz system:

ẋ1 = ��x2 − x1� ,

ẋ2 = − x2 − x1x3 + Rx1,

ẋ3 = x1x2 − bx3, �2�

where �, R, and b are parameters and the system presents
chaotic behavior for R�24,74.

Why one of the simplest? Notice that this system pos-
sesses the minimum number of autonomous2 differential
equations permitting chaos: 3.3 Besides that, chaos is a phe-
nomenon that only takes place in nonlinear systems, and the
smallest piece of nonlinearity that we can add to a linear
system in order to turn it nonlinear is a quadratic term.

Observe that the Lorenz system presents only two nonlin-
ear quadratic terms. Even in this simple case, as we will
show, a Taylor series expansion of fourth order will lead to a
map of fifth degree in three variables.

Consider the following initial condition: x1�0�=x10,
x2�0�=x20, x3�0�=x30. We can expand the corresponding so-
lution as

xi = �i�t� = �i�0� +
d�i

dt
�0�t +

d2�i

dt2 �0�
t2

2!
+ ¯ . �3�

Since the system is defined by the equation
dxi

dt = f i�x��, we

have that ẋi= �̇i= f i,
4 implying that

d

dt
�d�i

dt
� =

dfi

dt
= 	

j=1

3
�f i

�xj

dxj

dt
= 	

j=1

3
�f i

�xj
f j . �4�

We can notice that, for the case of the Lorenz system, this
process will increase the degree of the polynomials forming
the mapping by 1 for each order.5 So the mapping corre-
sponding to the fourth-order Taylor expansion is, at maxi-
mum, formed by fifth-degree terms. A polynomial mapping
of fifth degree implies a total of 168 coefficients. Remember
that, as mentioned, this is for one of the simplest chaotic
dynamic system cases �i.e., three-dimensional and only two
nonlinear �quadratic� terms�.

It is important to notice that, in time-series analysis, we
do not have the dynamic system to begin with. We, of
course, will consider that there is such a system behind the
series and we will look for determining it. With the explana-
tions above, we hope to have made it clear that, even if the
underlying system is as simple as the Lorenz’s one, we will
already have to face a great computational task �if one wants
to use fourth order expansions—generally the minimum ac-
curacy necessary for practical purposes� of determining the
168 coefficients. With more detail, using the Lorenz system
as a model for the global fitting scheme, let us suppose that
we have a time series produced from this system �for in-
stance, take one of the coordinates of the system�. After the
usual phase-space reconstruction �4�, say we want to have a
fourth-order mapping �for the reconstructed system� with the

1One can also do forecasting in a local version via analyzing the
behavior of close vectors �to the one just before the one to be
predicted� in order to estimate the next �unknown� entry �see �1��.

2The time does not appear explicitly.
3In two dimensions we cannot have chaos because the trajectories

cannot cross.
4Where u̇ represents du

dt .
5Since the highest degree present in the functions f , g, and h is

quadratic, the derivatives �present in Eq. �4�� are, at maximum,
first-degree polynomials.
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same accuracy that could be found in the fourth-order Taylor
expansion for the Lorenz system. We would have to employ
some minimization technique to determine 168 coefficients.
In practice, this is a very high number, making the whole
procedure computationally expensive.

So we are left with the hard choice of either paying the
computational price mentioned above and be very patient or
trying to decrease the degree of the mapping. Of course,
there is no such thing as a “free lunch.” The price for the
latter choice would be that the accuracy would decrease �the
corresponding Taylor expansion would be of lower order�.

Therefore, despite the fact that the global approach has
many attractive features, such as the fact that, once it is de-
termined it is applicable to the whole series,6 one sees that
the effective use of it can be difficult to achieve in practice.
So there is a clear demand for procedures that can, without
increasing the degree of the global mapping, enhance the
accuracy of such mappings. In the next subsection, before
introducing one such attempt, we will talk about mappings.

B. Regarding mappings

In order to clarify the central idea of our proposed algo-
rithm, let us make some comments and present some results
concerning mappings representing the solutions for SDE’s.

Consider the transformation group in n variables:

xi
* = Fi�x�,t� , �5�

where t is the group parameter. From Lie’s theory �13–15�,
we know that this group is the solution to a SDE defined by

xi = f i�x�� , �6�

where f i�x��
�
�Fi

�t �t=0 and ẋi

dxi

dt . Therefore, the transforma-
tion group �5� �i.e., the solution to the dynamic system �6��
can be obtained from the group generator defined as the op-
erator X
	i=1

n f i
�

�xi
, as follows:

xi
* = Fi�x�,t� = xi + tX�xi� +

t2

2!
X2�xi� + ¯ = 	

k=0

�
tk

k!
Xk�xi� .

�7�

In this way, starting from a generic point P0, with corre-
sponding coordinates x��P0�, by choosing a time interval �t,
the transformation group �5� generates a mapping M that
takes a point on some given solution to the system and takes
it to another such point that corresponds to a group param-
eter increased by �t:

xi�P+1� = Fi�x��P�,�t� = 	
k=0

�
�tk

k!
Xk�xi�P�� . �8�

In practice, the process of numerically solving the SDE can
be summarized by choosing a small time interval ��t�1�
and truncating the series �8� at some order N, thus obtaining

a mapping M̄ given by

x̄i�P+1� = F̄i�x��P�,�t� = 	
k=0

N
�tk

k!
Xk�xi�P�� , �9�

where x̄i�P+1� approaches xi�P+1� when �t→0. Defining the
functions �k	i as

„	i�x��P�� = �0	i�x��P��… 
 xi�P+1� − x̄i�P+1� = 	
k=N+1

�
tk

k!
Xk�xi�P�� ,

„�	i�x��P�� = �1	i�x��P��… 
 	i�x��P+1�� − 	i�x��P�� ,

�k	i�x��P�� 
 �k−1	i�x��P+1�� − �k−1	i�x��P�� , �10�

where �k=2, . . . �, one can notice that

�	i�x��P�� = 	
j=1

n �	i�x��P��

�xj
�xi + O��xi

2� �11�

and, generally,

�k+1	i�x��P�� = ��k	i�x��P�� = 	
j=1

n ��k	i�x��P��

�xj
�xi + O��xi

2� .

�12�

Since �t→0 implies that �xi→0, we can, using Eq. �12�,
enunciate the following result:

lim
�t→0

�k+1	

�k	
= 0, �13�

where k is a positive integer.
In the next subsection, based on this important result, we

will present an algorithm that enhances the predictive power
of global mappings for time series.

C. Mathematical basis for the algorithm

Based on the above result �13�, we have produced an
algorithm that allows for improving the forecasting for the
global fitting of a time series.

As mentioned, we will suppose that the given time series
originates from phenomena that can be described by a low-
dimensional dynamic system �S0�. After phase-space recon-
struction �10�, we have a set of vectors defining a set of
points along a single trajectory of the reconstructed systems
�Sr�.

7 As usual, what we would like to determine is a global
mapping M that would �with infinite precision� represent the
solutions of the system Sr. But, of course, in practice, what

we can do is to produce a global mapping M̄ through a
procedure involving a minimization process.8 If the mapping

M̄ produces good forecasting for the series, that means that

the coefficients present on M̄ are close to the analogous ones

6In the case of local mappings, we have to determine a mapping
for each entry of the series.

7Takens �10� has demonstrated that the systems S0 and Sr are
topologically equivalent.

8In layman terms, what is done is to adjust the coefficients of the
polynomial mapping �of a certain degree� to better reproduce the
phase-space points.
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present on the mapping M which can be represented by the
infinite series �8� �and, ideally, it would describe Sr with
absolute precision�. In that situation, we would be in a simi-
lar position to the one presented in the last subsection �where
we had just a truncated series because we knew the underly-
ing SDE and could determine the Taylor expansion�. Why
similar? In the “real” case we are dealing with now, we only
have the series and have to determine the mapping through a
finite process and, therefore, the coefficients would not be
exactly the same as in the truncated expansion of Sr. So
defining functions 	i and �k	i analogously to how we did in
the last subsection, we would expect that Eq. �13� would be
valid. Actually, in the real world, the inequality

�k+1	 � �k	 �14�

is not valid for any positive integer k. The point is that, in
actual calculations, �t would be a finite value �not infinitesi-
mal� 
t. So at some integer value K, the inequality �14�
would become


K+1	 � 
K	 . �15�

The above reasoning allows us to build an easily applicable
algorithm: Consider that we want to forecast the coordinate
xi �where i can take any value from 1 to the dimensionality
of the reconstructed system� of a point P+1 that immediately

follows a given point P. In order to produce the mapping M̄,
we use a certain number a+1 of points that precede the point
P+1 �the points P , P−1, P−2, . . . , P−a�. Using this map-
ping, we can forecast the xi coordinates for these a+1 points.
Let us call these a+1 values x̄i. From these, we can define
the functions 
k	i �analogously to the functions �10� in Sec.
II B�.


0	i�x��J�� 
 xi�J� − x̄i�J�,


1	i�x��J�� 
 
0	i�x��J�� − 
0	i�x��J−1�� ,

] ]


k	i�x��J�� 
 
k−1	i�x��J�� − 
k−1	i�x��J−1�� ,

] ] �16�

where �k=0, . . . � and �J= P−a+k , . . . , P�. Using these defi-
nitions, we can determine the values for k where we have

k+1	�
k	,9 and, using this knowledge, we will see that we

can improve the forecasting generated by the mapping M̄.
Let us clarify what we mean: if we want to forecast the value
for the coordinate xi of the point P+1, we may use the global

mapping M̄ that would produce the forecast x̄i�P+1�. We know
that xi�P+1�− x̄i�P+1�=
0	i�x��P+1�� and, therefore,

xi�P+1� = x̄i�P+1� + 
0	i�x��P+1�� . �17�

Notice that we do not know the value for 
0	i�x��P+1��. But
we know that 
1	i�x��P+1��=
0	i�x��P+1��−
0	i�x��P��, implying
that


0	i�x��P+1�� = 
0	i�x��P�� + 
1	i�x��P+1�� . �18�

Let us examine this: we know the value for 
0	i�x��P�� �i.e.,
xi�P�− x̄i�P�� but we do not know 
1	i�x��P+1��. However, if �P�
and �P+1� are sufficiently close �such that 
1	i�
0	i�, we
can expect that we will gain information when substituting
Eq. �18� into Eq. �17�, obtaining

xi�P+1� = x̄i�P+1� + 
0	i�x��P�� + 
1	i�x��P+1�� . �19�

Why do we gain information? If we compare Eq. �17� to
Eq. �19�, we can observe that the unknown term in Eq. �17�
is 
0	i�x��P+1�� which is �by hypothesis� much bigger than the
unknown term in Eq. �19�: 
1	i�x��P+1��. So the term

0	i�x��P�� is a correction to x̄i�P+1�. Analogously, we have

2	i�x��P+1��=
1	i�x��P+1��−
1	i�x��P��, implying that


1	i�x��P+1�� = 
1	i�x��P�� + 
2	i�x��P+1�� . �20�

Substituting this into Eq. �19�, if �P� and �P+1� are suffi-
ciently close such that 
2	i�
1	i, we would have a second-
order correction to x̄i�P+1�. Actually, when the relation

k+1	i�
k	i applies, we can further correct x̄i�P+1�—i.e.,

xi�P+1� = x̄i�P+1� + 
0	i�x��P�� + 
1	i�x��P�� + ¯ + 
k	i�x��P��

+ 
k+1	i�x��P+1�� . �21�

Therefore, we can build a simple algorithm to improve the

prediction x̄i�P+1�, obtained with mapping M̄: we determine
the integer k for which the approximation starts to fail—i.e.,

k+1	i�
k	i—then we neglect the term 
k+1	i�x��P+1�� and
end up with

xi�P+1�  x̄i�P+1� + 
0	i�x��P�� + 
1	i�x��P�� + ¯ + 
k	i�x��P�� .

�22�

The remaining question is how to define 
k+1	i�
k	i.
Let us elaborate on the analysis just made above. We are
interested in using an approximation, a kind of Taylor series
expansion, when trying to forecast the time series. What one
might expect from such a situation? In a perfect world, the
terms in the series would, gradually, become smaller in an
infinite fashion. Of course, as already mentioned above, we
are dealing with a real series, where each entry is not infini-
tesimally apart the previous one and is, actually, finitely
separated. How “finitely separated” depends on the particular
series under study and, being more rigorous, on the particular
section of the series we are considering. This translates to the
fact that, if one considers the absolute values of the differ-
ences 
k	i, they will decrease with increasing values for k
until this value reaches the magnitude defined by the “non-
infinitesimal” character of the time series we have just em-
phasized, where this character will then make the values for
the differences oscillate �for a while� around this magnitude

9There is a finite range for the values for k in which that happens.
After a certain value, the 
k−1	i start to diverge.

BARBOSA et al. PHYSICAL REVIEW E 74, 026702 �2006�

026702-4



�since this magnitude would dominate over the initial ten-
dency of the differences to decrease�. With the increasing
values for k, this initial tendency of the differences to de-
crease will cease as our approximation �Taylor like� stars to
diverge from the actual value for the series. We will then see
the absolute values for the following differences start to in-
crease and rapidly diverge. That clearly, if one thinks in plot-
ting the �absolute� values for the differences, defines a pla-
teau where 
k+1	i�
k	i and our above-introduced method
will work at its best.

D. Steps of the algorithm

Consider that we have already reconstructed the phase
space from the time series under study and that we want to
forecast the P+1 entry �P is the last known value of the
series�. This entry corresponds to a coordinate of a recon-
structed vector on the phase space �as usual�. Using a global

mapping M̄, obtained via standard k-fold validation proce-
dures �16�, we do the following.

�i� Set n=10.
�ii� We calculate the absolute value for the functions 
k	i

�see Eq. �16�� up to k=n for the point P.
�iii� We check to see if we have already found the plateau;

i.e., we look for the value of k for which �
k	i�� �
k+1	i�.
Note that this checking can be very easily automatized.

�iv� If the checking returns false, we set n=n+10 and
return to step �ii�. Otherwise we would have found the cor-
rected value for xi�P+1� as

xi�P+1�  x̄i�P+1� + 
0	i�x��P�� + 
1	i�x��P�� + ¯ + 
k	i�x��P�� .

�23�

III. APPLICATIONS

In this section, we are going to present two applications of
the above-introduced improved forecast method. We will
start by introducing the time series in question and present
the reconstruction parameters and the associated global map-
ping. We then will proceed to the algorithm, following the
steps just introduced, and compare the average performance
for the “usual” and the improved approaches.

A. Application 1: Lorenz system

1. Time series

This is an “academic” application in the sense that it,
certainly, originates from a dynamic system and we actually
even know which one. But it is important in order for us to
see the ideas of the improved method working in an arena
that suits it very nicely.

The time series was generated taking the consecutive val-
ues for the x1 coordinate of the Lorenz system �see Eq. �2��,
starting from the initial condition x10

=−0.333 666 666 7,
x20

=−0.333 666 666 7, x30
=21.999 666 666 7, using an

eighth-order Runge-Kutta numerical integration �17�. The se-
ries presents 600 entries �see Fig. 1 for a plotting of this time
series�.

Now, in order to apply the global analysis �1,4� to this
time series, we have to reconstruct the phase space. To do
that, we need to determine the relevant parameters: namely,
the time lag and the embedding dimension �see �12��. For
this present case, the reconstruction parameters are
�time lag�=6 and �embedding dimension�=3. So in the re-
mainder of this subsection, we will call these three dimen-
sions of the reconstructed phase space for the Lorenz system
�x ,y ,z�. In real life, we use the whole time series we know
and measure to produce the global mapping and use it to
predict future �unknown� entries. Here, in order to evaluate
the accuracy of the predictions we obtain using a regular
global fitting and our improved one, we are going to use an
initial portion of the series to generate the mapping and the
other �remaining� portion of the series as our testing ground;
i.e., we will apply our mappings to entries in that region and
compare them to the actual values to see how the mappings
fared. In the present case, the first 140 entries constitute our
portion of the series used to build the mapping up. Basically,
we use all the vectors reconstructed from these entries and
produce a quadratic fitting minimizing the distances from
this fitting �when applied to each vector� to the actual values
via, for instance, a least-mean-squares procedure. Actually,
we also have used an improvement �a very standard one�
called a k-fold validation �16�. In layman’s language, basi-
cally what this k-fold validation does is to average up several
mappings. Doing all this, the global mapping we have de-
rived �and to be used on this application henceforth� is

M̄ = 1.317833301x − 0.005266089766x2 + 0.07580676400xy

− 0.1245478927xz − 0.01839588238y2

+ 0.06578287850yz − 0.01025562766z2

− 0.4700554502y + 0.1415056465z . �24�

2. Inner works of the improved forecast algorithm

Let us now, using two generic points from the series, ex-
emplify the workings of our improved method.

FIG. 1. Lorenz time series. The horizontal axis marks the posi-
tion of the entry �i� and the vertical on the value for the entry �X�i��.
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Consider the entries P=316 and P=533, with respective
values of −1.370 578 116 and 6.860 383 245. The values for
the entries P=317 and P=534, the “next” entry for each case
considered here, are −1.041 455 029 and 7.225 654 731. Let
us see how the “usual” global fitting fares in these entries.
Using the mapping presented in Eq. �24�, we get the follow-
ing forecasting for the entries P=317 and P=534:
−0.782 644 049 and 7.062 3742 64. These present a “per-
centage error” �given by �100� �value−forecast� /value�� of
24.850 903 09 and 2.259 732 482, respectively. How about
the improved method?

In order to apply our method we have to find the plateau
by finding the value for k to which �
k	i�� �
k+1	i�. Let us do
that for the couple of points chosen above.

a. P=316. As “prescribed” above, what we have to do is,
by looking at Table I, second column, determine at which
value of k
k	�x��P�� stops decreasing for the first time �and
begin the oscillations we have mentioned in Sec. II C�. From
Table I, we see that happens for k=5. Using this in Eq. �23�,
we find �see Table I� that the “percentage error” for our
method is 0.000 479 809 5.

b. P=533. Again, what we have to do is, by looking at
Table II, second column, determine to which value of
k
k	�x��P�� stops decreasing for the first time �and begin the
oscillations we have mentioned in Sec. II C�. From Table II,
we see that happens for k=3. Using this in Eq. �23�, we find
�see Table II� that the “percentage error” for our method is
0.000 198 653 3.

As we mentioned in Sec. II C, we expect the absolute
values of 
k	�x��P�� to oscillate when �
k	i���
k+1	i�. That

fact is illustrated, for the entries P=316 and P=533, respec-
tively, in Figs. 2 and 3.

3. Performance comparison

The reader may ask, why these two entries above? Fair
enough, they are not special at all. So in order to confirm the
fact that our new approach may be an advantage, let us make
a general survey of the entries in the time series. We take 21
entries, equally distributed, in the last part �not used when

TABLE I. We plot the �
k	�, for entry 316, for the Lorenz sys-
tem time series. IGF is our improved global fitting result corre-
sponding to the particular value of k.

k �
k	�x��P��� IGF Error

1 0.015127123 −1.042168004 0.06845950907

2 0.000902659 −1.041265345 0.01821336445

3 0.000202785 −1.041468130 0.001257951581

4 0.000032905 −1.041435225 0.001901570346

5 0.000014807 −1.041450032 0.0004798094839

6 0.000018502 −1.041468534 0.001296743462

7 0.000011662 −1.041456872 0.0001769639541

8 0.000009405 −1.041447467 0.0007260995232

9 0.000006933 −1.041454400 0.00006039627084

10 0.000006450 −1.041460850 0.0005589295589

11 0.000005072 −1.041455778 0.00007191861186

12 0.000011998 −1.041443780 0.001080123451

13 0.000020272 −1.041423508 0.003026630927

14 0.000055212 −1.041368296 0.008328060030

15 0.000149033 −1.041219263 0.02263813544

16 0.000346170 −1.040873093 0.05587720869

17 0.000723317 −1.040149776 0.1253297515

18 0.001398781 −1.038750995 0.2596400156

19 0.002499815 −1.036251180 0.4996710232

20 0.004042167 −1.032209013 0.8877979118

TABLE II. We plot the �
k	�, for entry 533, for the Lorenz
system time series. IGF is our improved global fitting result corre-
sponding to the particular value of k.

k 
k	�x��P�� IGF Error

1 0.005833355 7.225283437 0.005138551644

2 0.000348756 7.225632193 0.0003119163708

3 0.000008184 7.225640377 0.0001986532783

4 0.000008912 7.225649289 0.00007531497425

5 0.000003874 7.225653163 0.00002170045565

6 0.000001257 7.225654420 0.000004304108231

7 0.000000331 7.225654751 0.0000002767915261

8 0.000000150 7.225654901 0.000002352727972

9 0.000000251 7.225655152 0.000005826461624

10 0.000000532 7.225655684 0.00001318911622

11 0.000001007 7.225656691 0.00002712556956

12 0.000001712 7.225658403 0.00005081892419

13 0.000002692 7.225661095 0.00008807506360

14 0.000004115 7.225665210 0.0001450249201

15 0.000006683 7.225671893 0.0002375148085

16 0.000012706 7.225684599 0.0004133604651

17 0.000028487 7.225713086 0.0008076084753

18 0.000068998 7.225782084 0.001762511561

19 0.000166009 7.225948093 0.004060005784

20 0.000380304 7.226328397 0.009323252011

FIG. 2. The plot shows the values of the �
k	� against the num-
ber k, for entry 316, for the Lorenz system time series. The value of
k that our procedure defines as the beginning of the plateau for this
case is k=5.
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producing the global mapping� of the time series. The results
are presented in Table III.

The idea behind presenting the results for points equally
spaced in the entire time series �meaning the entire testing
ground defined above� was to provide the information on all
the time series; i.e., it is very important �for many series� for
the section in which the analysis is carried out. So we have
decided to present the results for many points, evenly distrib-
uted along every section of the time series. But for complete-
ness, we will present the average percentage error �for the

improved global fitting� for the whole testing ground for the
time series and for the 21 entries used in Table III. The
percentage error for the whole series is 0.160 196 168 3e−1
and for the 21 entries on the table is 0.338 584 919 9e−1.
Both are compatible, showing that the chosen 21 are repre-
sentative of the totality of the possibilities. The percentage
error for the “regular” global fitting is �for the whole series�
10.589 399 30.

As can be seen, our method is a great improvement of
accuracy when compared with the “plain” global fitting. To
help in this analysis we present Fig. 4 where we plot
ln�
GF /
IGF�, where 
GF and 
IGF are, respectively, the per-
centage errors in the global fitting and the improved global
fitting. As can be seen from the figure, most of the IGF errors
are smaller than e−4 times the GF errors.

B. Application 2: Heart beat

1. Time series

Let us now deal with a more “real” example, where we
deal with data extracted from nature, we do not know the
system behind the phenomenon, etc. The following time se-
ries was obtained10 from measurements of the heart beat rate
in a person performing many different activities. The series
presents 1744 entries �see Fig. 5 for a plotting of this time
series�.

In order to produce the global mapping for this case, we
have proceeded in the same fashion as we did in the Lorenz-
system time-series application. So we will not repeat the
whole explanation of the procedures involved here. Refer to
Sec. IV A above. For this application, the reconstruction pa-
rameters are �time lag�=10 and �embedding dimension�=3.
So in the remainder of this subsection, we will call these
three dimensions of the reconstructed phase space for the
heart beat data �x ,y ,z�. The global mapping we have derived

10See Ref. �18�. http://ecg.mit.edu/time-series/

FIG. 3. The plot shows the values of the �
k	� against the value
of k, for entry 533, for the Lorenz system time series. The value of
k that our procedure defines as the beginning of the plateau for this
case is k=3.

TABLE III. Comparison between the global fitting and the im-
proved global fitting for the Lorenz time series.

N GF error IGF error

300 2.949988321 0.0007879476836

310 9.384955078 0.003895726200

320 602.9300615 0.6329500170

330 4.588145520 0.00003360765471

340 0.6804060144 0.000006172635711

350 1.799833141 0.000002478938512

360 1.908426262 0.00003660198120

370 1.992750955 0.00003095127924

380 5.351353323 0.005676508421

390 15.14897504 0.00006055593702

400 17.40670926 0.03531034693

410 11.79516640 0.00003410572689

420 6.417051601 0.000009213921336

430 3.561881518 0.0000003239205212

440 2.472699706 0.0000008353740914

450 2.070219097 0.000002536966462

460 2.807205469 0.00004274128369

470 9.466251097 0.03219442293

480 17.78540068 0.00003404766212

490 15.54182977 0.00001293826149

500 9.424552928 0.0000008546217942

FIG. 4. The plot is for ln�
GF /
IGF� against the position in the
time series �i�. The line marks the threshold where, above it, 
IGF

starts to be smaller than e−4 times 
GF.
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�and to be used on this application henceforth� is

M̄ = − 1.172534275x − 0.2617292220z2 + 0.4661889468yz

− 0.3426537822y2 − 0.1107944588xz

+ 0.3574412776xy − 0.1136908621x2 + 15.65933419z

− 12.98866231y . �25�

2. Inner works of the improved forecast algorithm

Let us now, using two generic points from the series, ex-
emplify the workings of our improved method.

As in the previous application, consider the entries P
=737 and P=1016, with respective values of 89.188 756 24e
and 94.250 981 25. The values for the entries P=738 and
P=1017, the “next” entry for each case considered here, are
89.167 431 26 and 94.289 815 63. Let us see how the
“usual” global fitting fares in these entries. Using the map-
ping presented in Eq. �25�, we get the following forecasting
for the entries P=738 and P=1017: 90.996 977 and
82.611 004. These present a “percentage error” �defined

above� of 2.051 809 404 and 12.386 079 61, respectively.
How about the improved method?

In order to apply our method we have to find the plateau
by finding the value for k to which �
k	i�� �
k+1	i�. Let us do
that for the couple of points chosen above.

a. P=737. As “prescribed” above, what we have to do is,
by looking at Table IV, second column, determine to which
value of k
k	�x��P�� stops decreasing for the first time �and
begin the oscillations we have mentioned in Sec. II C�. From
Table IV, we see that happens for k=1. Using this in Eq.
�23�, we find �see Table IV� that the “percentage error” for
our method is 0.397 047 391 6.

b. P=1016. Again, what we have to do is, by looking at
Table V, second column, determine to which value of
k
k	�x��P�� stops decreasing for the first time �and begin the
oscillations we have mentioned in Sec. II C�. From Table V,
we see that happens for k=3. Using this in Eq. �23�, we find
�see Table V� that the “percentage error” for our method is
1.524 959 626.

As in the previous application, we expect the absolute
values of 
k	�x��P�� to oscillate when �
k	i���
k+1	i�. That
fact is illustrated, for the entries P=737 and P=1016, re-
spectively, in Figs. 6 and 7.

3. Performance comparison

Let us make a general survey of the entries of this time
series. We take 26 entries, equally distributed, in the last part
�not used when producing the global mapping� of the time
series. The results are presented in Table VI.

The idea behind presenting the results for points equally
spaced in the entire time series �meaning the entire testing
ground defined above� is the same one explained in the sec-
tion regarding the Lorenz system. The percentage error for
the whole series is 1.877 994 467 and for the 26 entries in
the table is 1.429 515 613. Both are compatible, showing that
the chosen 26 are representative of the totality of the possi-
bilities. The percentage error for the “regular” global fitting
�for the whole series� is 5.971 546 764.

As can be seen, in the majority of cases, our method is,
for this more “realistic” case, also a great improvement of

TABLE IV. We plot the �
k	�, for entry 737, for the time series
with the heart beat data.

k 
k	�x��P�� IGF Error

0 1.40709476 89.58988224 0.4737727375

1 0.06841402 89.52146822 0.3970473916

2 0.11034922 89.63181744 0.5208024650

3 0.44228546 90.07410290 1.016819288

4 0.56575633 90.63985923 1.651306928

5 0.43932335 91.07918258 2.144001787

6 0.00174856 91.07743402 2.142040802

7 0.99434282 90.08309120 1.026899538

8 3.10231730 86.98077390 2.452304983

9 7.64654504 79.33422886 11.02779598

10 17.67633668 61.65789218 30.85155498

TABLE V. We plot the �
k	�, for entry 1016, for the time series
with the heart beat data.

k 
k	�x��P�� IGF Error

0 9.89683125 92.50783525 1.889896982

1 2.18086125 94.68869650 0.4230370664

2 1.05010575 95.73880225 1.536737144

3 0.01110500 95.72769725 1.524959626

4 0.49314562 95.23455163 1.001949143

5 0.37340972 94.86114191 0.6059257579

6 0.43065248 95.29179439 1.062658521

7 2.97396166 98.26575605 4.216723082

8 10.77153154 109.0372876 15.64057780

9 32.44747527 141.4847629 50.05306984

10 86.66665506 228.1514179 141.9682512
FIG. 5. Heartbeat data. The horizontal axis marks the position of

the entry �i� and the vertical on the value for the entry �X�i��.
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accuracy when compared with the “plain” global fitting. To
help in this analysis we present Fig. 8 where we plot
ln�
GF /
IGF�, where 
GF and 
IGF are, respectively the per-
centage errors in the global fitting and the improved global
fitting. As can be seen from the figure, most of the IGF errors
are more than five times smaller than the GF errors.

IV. CONCLUSION

There is a huge demand for improving methods that do
not cost too high a computational price to achieve desired
levels of accuracy in time series analysis.

Here, we have presented one such method. The basic ra-
tionale behind it is that we can make use, as explained in
Sec. II, of the underlying �assumed� low-dimensionality dy-
namics to correct our forecast. It is important to mention
that, in order to apply the method, one does not have to
quantify the hyperbolicity �or the low dimensionality, for that
matter� of the time series. The steps of the procedure will
take �automatically� care of stopping when this hyperbolicity

“spoils” the correcting power of the method. So the algo-
rithm is secure. It is also useful to remember that our efforts
here are aimed at avoiding the computational cost of the
fitting and minimizing procedures. So our method is not
equivalent to fittings, with the same computational cost, in
any shape or form.

We have presented two applications of our method: The
first one is a �we are going to call it� pure low-dimensional
known system, from which we generated a time series. The

FIG. 6. The plot shows the values of the �
k	� against the value
of k, for entry 737, for the heartbeat time series. The value of k that
our procedure defines as the beginning of the plateau for this case is
k=1.

FIG. 7. The plot shows the values of the �
k	� against the vale
for k, for entry 1016, for the heartbeat time series. The value of k
that our procedure defines as the beginning of the plateau for this
case is k=3.

TABLE VI. Comparison between the global fitting and the im-
proved global fitting for the time series with heart beat data.

N GF error IGF error

500 3.397125034 2.168865202

540 9.089213645 1.889289807

580 5.874155830 0.1858455792

660 1.844997944 1.332964363

700 0.3583492837 0.01355789862

740 2.400959523 0.1672692403

780 0.4937771060 0.1540773590

820 1.249041343 0.1600760146

860 10.26039663 0.8787867282

900 6.962087707 0.8589041386

980 4.565823761 0.2342961164

1020 14.67475919 3.116867623

1060 1.249489572 0.5393005133

1100 1.075608307 2.987879519

1140 0.2169661915 0.08177074130

1180 13.66135448 0.4848516873

1220 2.732512685 0.8664583752

1260 6.861097043 0.6660946812

1340 9.400776847 0.9535935739

1380 1.392042607 0.2352261816

1420 0.8176069275 0.5917808721

1460 2.813583072 0.2695624030

1500 6.384669758 6.651398095

FIG. 8. The plot is for ln�
GF /
IGF� against the position in the
time series �i�. The solid line marks the threshold where, above it,

IGF starts to be the half of 
GF and the dotted line the threshold
where, above it, 
IGF starts to be the fifth of 
GF.
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reason for this application is to use the method on a con-
trolled arena; i.e., we can see the method working at its best.
What do we mean by its best? Could we not have gotten
better results than the ones presented in Sec. III A? Of course
we could have, for instance, if we have made the time series
more “dense;” i.e., if we had used smaller values for 
t, of
course, the results would be better. Indeed, we can do the
same indefinitely up to infinite precision. What we mean by
“its best” is the fact that there is not, for sure, any high-
dimensional behavior. We have then demonstrated that the
ideas behind our method work quite nicely.

The second application corresponds to a time series ob-
tained from measurements; i.e., we do not have any prior
knowledge about the �possible� dynamic system underlying
it. We have found that, after the usual techniques have been
used to produce the global mapping, we could improve the
forecast capabilities of the fitting quite a bit �see Sec. III B�,
thus demonstrating the practicality of our approach in an
uncontrolled situation.

Our method has, of course, its limitations. Perhaps the
most obvious one is the fact that it will not help much in the
case where the time series is “sparse;” i.e., as we have men-
tioned just above, as 
t becomes large, the method will not
work. The limitation so far is that we do not have a criterion,
as yet, to, just by quickly inspecting the time series, deter-
mine if our method applies well or not. One has to have a go
and, in a testing arena, verify if the method is improving
things.

That leads to future work: the production of a fast algo-
rithm to test the time series for applicability �or not� of the
method. One other possible line of research to be pursued is
to improve our algorithm in the sense of using more infor-
mation contained in the plateau than we are using now. So
far, we are taking the first piece of data on the plateau, but as
we have explained in Sec. II C, the values for the corrections
will oscillate from that point on. It is reasonable to look for
an algorithm to extract information from this oscillation.
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